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SCJMMARY 
This paper considers the stabilizing effect of density 

stratification on the horizontal shear layer between two parallel 
streams of uniform velocities. A simple continuous velocity 
distribution, U = Vtanh(y/d), is used to represent the laminar 
shear layer. The density of the fluid is assumed to vary as 
exp( - Py), y being the vertical coordinate, with a small total 
change in density across the shear layer. The fluid is unbounded, 
and is assumed to be inviscid, incompressible and under the 
action of gravity. 

By the methods of hydrodynamic stability theory, it is shown 
that a disturbance of small amplitude and wave-number u is 
neutrally stable if the Richardson number, defined as J = gpd2/V2,  
has the value u2d2( 1 - u2d2), and the form of the neutral disturbance 
is obtained. It follows that the critical Richardson number is 4, 
so that the flow is stable if J > f. The relation between these 
results and Goldstein’s derivation of the same critical Richardson 
number for a flow with discontinuous velocity and density 
gradients is discussed. 

1. INTRODUCTION 
The natural occurrence of one parallel stream over another denser stream 

is widespread. Familiar examples are a river flowing into the sea and a 
warm layer of wind blowing over a cool one. The knowledge that the 
tendency of gravity to keep the denser fluid below the lighter might strongly 
inhibit turbulence in such flows aroused interest in their stability many 
years ago. This effect of gravity was first investigated by Stokes, who 
treated the stability of one fluid resting above another of greater density. 
Many authors extended Stokes’s work to various flows of several superposed 
horizontal layers of fluids with piece-wise constant density and horizontal 
velocity (such that the density and velocity are constant in each layer but 
may vary from layer to layer). The stability of a heterogeneous fluid 
(i.e. a fluid with a continuous vertical variation of density) at rest also 
was treated by Lord Rayleigh and others. 

The general problem of stability of an inviscid fluid with both density 
and velocity continuously varying with height was approached in 193 1 by 
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Taylor and Goldstein independently. They each doubted the ability of 
a flow with several layers of homogeneous fluids to represent the phenomena 
occurring in the sea and atmosphere. The  mathematical question was 
whether the stability of a heterogeneous fluid could be approximated by 
use of a large number of layers of homogeneous fluids. T o  study this question 
they derived the equation of hydrodynamic stability of small amplitude 
waves in a parallel primary flow of an inviscid heterogeneous fluid under 
gravity. They went on to consider the stability of some special flows with 
layers, in each of which either the shear (i.e. the velocity gradient) or the 
velocity is constant and the density either is constant or varies exponentially. 
They each concluded that a multi-layer system of homogeneous fluids 
could not be used to approximate the stability of a heterogeneous fluid. 

I n  $ 2  of this paper the stability equation of Taylor (1931) and Goldstein 
(1931) is derived in dimensionless form. In 9 3 their results are summarized 
and discussed in the light of subsequent work. The  natural phenomenon 
of a shear layer in a heterogeneous fluid is more accurately described in $ 4  
by use of continuously varying functions for velocity and density. This 
avoids the possible effect of discontinuities in either velocity or velocity 
gradient and either density or density gradient on the stability characteristics ; 
also the vorticity (i.e. the velocity gradient) is not assumed constant. 
It is then shown simply that a small-amplitude wave disturbance of 
(dimensionless) wave-number a is neutrally stable if the Richardson 
number J = a2(1 - a2). I t  follows that the flow is stable for all wave 
disturbances if J > $, the same critical Richardson number found by 
Goldstein (1931) for a shear layer with two discontinuities in the primary 
vorticity. 

2. T H E  STABILITY EQUATION 

Following Taylor (193 1) and Goldstein (193 l), we consider the inviscid 
stability equation for a parallel flow under gravity with a steady horizontal 
velocity U ( y )  varying with heighty. The  fluid is heterogeneous with density 
p(y) ,  although each material particle is incompressible. 

First consider the dimensionless parameters of this primary flow. 
Suppose that the velocity field has characteristic scales d of length and V of 
velocity ; and that the density distribution has length scale lip. Then the 
flow may be typified by two dimensionless parameters. We define the 
Richardson number as 

J = gpd2/V2, (1) 

which measures the ratio of buoyancy forces to inertia forces. The  larger J 
the more stable the flow, because the steeper the density gradient the more 
energy of a disturbance is used to lift heavier fluid among lighter and push 
down lighter among heavier. We define the ratio of the length scale of 
velocity to that of density as 

(2) L = /?d. 
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It can be seen from the equation of motion that L represents the effect of 
variation of inertia arising from heterogeneity. Note that L = J F ,  where 
the Froude number F = V2/gd. 

The vector form of Euler's equations of motion for a gravitating inviscid 
fluid is 

Du 1 - = - - vp-gvy. 
Dt P 

(3) 

The condition of incompressibility and the equation of continuity lead to 
Dp/Dt = 0, (4) 

and v .u  = 0. (5 1 

u = U ( y )  +u', v = v', w = 0, 

Now consider the velocity field 

the pressure p =  - g p d Y + P ' ,  ( 6 )  

and the density P = P(Y) + P', 

representing the superposition of a primary flow and a small amplitude 
wave-disturbance (denoted by primes). 

The disturbance is assumed to be two-dimensional (so that w = 0) on 
the basis of the work of Yih (1955). Yih showed essentially that, for all 
parallel flows of a viscous heterogeneous incompressible fluid, the stability 
characteristics of a three-dimensional wave-disturbance are the same as 
those of a two-dimensional one at higher Richardson number J and lower 
Reynolds number. Thus only two-dimensional disturbances need be 
considered in the search for a sufficient criterion of stability, with 
minimum J and maximum Reynolds number. 

Any sufficiently small disturbance may be resolved into Fourier 
components which are dynamically independent, and so primed quantities 
will be taken as a typical component, being the real part of a complex quantity 
proportional to exp(iu(x- cf)}, where u is a positive wave-number and 
c = c,+ic, is a complex velocity. This wave has a phase velocity c, in the 
x-direction and logarithmic rate of increase uci in amplitude ; thus ci = 0 
for neutral stability. Taylor (1931) and Goldstein (1931) eliminated u', p' 
and p' from the equations of motion to get the equation for v'. Here 
equivalently we use the stream function of the disturbance 

*' = 4(y)exp{iu(x - 4, (7) 

U' = ay/ay, = -a$'/ax = -iut,Y. (8) 

to integrate the equation of continuity with 

Then elimination of p' and p' from the equations of motion leads to the 
equation 

gP'IP P' I u- (.)+'__ U'+I - 0, (U-c)(+"-Cr24)- u4- Ec+4- T(( I- 
P 
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where primes now and henceforth denote differentiations with respect to y .  
This becomes Rayleigh’s equation if the fluid is homogeneous, i.e. if /T’ = 0. 
When the appropriate dimensional scales are divided out of each quantity, 
this equation takes the dimensionless form 

( U - c ) ( f - a 2 + ) -  Un4- J ~ f $ + L ( p ’ l p p ) { ( U - c ) 4 ’ -  Uf$)  = 0. (9) u-c 
Taylor and Goldstein neglected the terms in L, which come from the 

effect of heterogeneity on the inertial terms in the equations of motion. 
This simplifies the mathematics, and L is in fact small in cases of practical 
interest where the density variation across the whole shear layer is small. 
When J # 0, the type of the singularities of equation (9) is not altered by 
putting L = 0. 

In  the cases examined by Taylor and Goldstein the density is piece-wise 
or varies exponentially, i.e. /T’/p = - p, where is zero or constant in each 
layer. This restriction does not appear to alter any essential feature of the 
stability of the real flow in a shear layer. Equation (9) is thus transformed to 

(U-c)(f$”-a2f$)- Un++Jf$/(U-c) = 0. (10) 

3 .  DISUJSSION OF THE WORK OF TAYLOR AND GOLDSTEIN 
Taylor (1931) and Goldstein (1931) solved equation (10) for two cases. 

For constant U there are two exponential solutions 
4 = exp[f {a2-J(U-c)-2}1’2]. 

For linear U the solutions were found in simple terms of Bessel functions 
of order .f! (1 - 45)lI2 and complex argument. Taylor found 

4 + (u- C):{if~(1-45)}  

as U-+c,  if U is linear near the critical plane where U = c. Therefore + 
decreases to zero as U + c  if 0 < J < $; if J > i, then the singularity 
differs in that #I oscillates infinitely rapidly as well as decreases in amplitude. 
With either singularity the horizontal velocity of the disturbance 
(proportional to 4‘) is infinite. 

Taylor’s consideration of several problems of three and four superposed 
streams, each of homogeneous fluid, indicated that there might be stability 
for J > $ in the limiting case of a continuous density distribution. This 
indication was supported by observation of the behaviour of streamlines 
depending on the singularity of 4 near the critical plane, yet was apparently 
contradicted by his results for a continuous density distribution. In  spite 
of the difficulty of handling the Bessel functions, he solved the problem 
with linear velocity and exponential density above a rigid horizontal plane. 
Only neutral waves can exist if J = gP/(velocity gradient)2 > a, and no waves 
at all can exist if 0 < J < &. 

The condition J = $ does not represent critical stability in the usual 
sense that all waves are stable for each J > $ and that there is at least one 
unstable wave for each J < :. Rather, his solution implies that the 
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assumption of Fourier resolution of an arbitrary disturbance into separate 
wave components is invalid for 0 < J < in the inviscid flow considered. 
In  fact, the possibility of a zero or negative critical Richardson number 
in Taylor’s semi-bounded flow can be shown by comparison with plane 
Couette flow between two rigid horizontal planes. Wasow (1953) proved 
that this flow of a homogeneous viscous fluid was stable to small disturbances 
at sufficiently large Reynolds numbers. This means that the critical 
Richardson number for the inviscid stability of bounded plane Couette 
flow is non-positive, because density increasing with height is needed to 
create instability. Thus there may be some stable disturbances in 
addition to those waves found by Taylor for J > 0. 

Goldstein (193 1) was principally concerned with a three-layer 
flow having U = u1 and p = plexp( -2ph) for y B h ;  U = uly/h and 
P=plexp(-P(y+h)) for h > y >  - h ;  and U =  - u l  and p = p l  for 
- h  > y. He found that disturbances can be neutrally stable only if 
J =g/3h2/u: 6 a, and therefore the flow is stable or unstable according 
as J > a or J < a respectively. 

Comparison of their results for piece-wise constant density with those 
for continuous density led Taylor and Goldstein each to conclude that not 
all the essential features of a continuous flow could be approximated in 
the limit by a multi-layer system. This conclusion was based on their 
particular results for three and four layers and on the doubt whether a 
multi-layer flow could approximate the singularity of the continuous flow 
in the critical plane where U = c. 

In  1951 Scorer derived equation (9) from the equations for an n-layer 
system by letting n+ co. Also, Benton (1953) found the equation for the 
eigenvalues of the complex wave-velocity of an n-layer system and then 
let n-t co. For certain velocity and density distributions he found that the 
progressive wave-speeds were the same in the limit as those of the 
corresponding continuous flow. Recent authors have generally favoured 
the conclusion that the eigenvalues and eigenfunctions of a general 
continuous flow are identical with the limits of the corresponding values 
and functions in an n-layer flow, but no proof has been given yet. In any 
event the limit cannot be uniform in n and y near the critical plane in view 
of Taylor’s observation that an n-layer system cannot have the infinite 
horizontal velocity associated with the singular behaviour of $. 

4. THE STABILITY OF THE FLOW WITH SMOOTHLY-VARYING VELOCITY 

Discontinuities of velocity and density gradients or of uniform shear, 
as in the flows considered by Taylor (1931) and Goldstein (1931), are 
discrepancies from the real flow which may influence the calculation of 
stability. I t  might be thought that any continuously curved velocity 
profile would be more difficult to handle than a profile consisting of straight 
line segments, but this is not always so. With a profile shaped like tanhy 
the stability equation (10) can be transformed to a second-order differential 

AND DENSITY 
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equation with four regular singularities. The antisymmetry of the profile 
then enables the stability criterion to be found for each wave-number 
without using any detailed properties of the general solution of the equation. 

Following Curle’s (1956) work on the corresponding flow of a homo- 
geneous fluid, let 

in dimensionless form. Thus the 
velocity scale V is half the velocity difference across the shear layer. The 
length scale d is Y divided by the velocity gradient at y = 0. Comparative 
studies of stability suggest that the exact shape of the velocity profile is 
not of much significance in stability criteria. However, the profile (11) 
can be well matched to that of a free boundary layer between parallel streams 
as calculated by Lock (1951), who supposed the streams meet in a line 
perpendicular to their flow and used Blasius’s equation for the flow 

U =  tanhy ( -  co < y  < co) (11) 
(This profile is shown in figure 1 (a ) . )  

downstream of the line. 

Y Y 

I V I 
I U 0 

-1 

I I 

Figure 1. (a)  The velocity profile U = tanh y. (b)  A typical profile of the density 
ji = exp(-Ly). 

Let p = exp(-Ly) ( -  co < y  < co) (12) 
in dimensionless form. The infinity of ji at y = - co and the zero at 
y = + co lead to a wave exponentially damped at y = f co where the 
primary flow is uniform, provided a > + L  (as can be shown by examination 
of equation (9) in asymptotic form). There is no singular behaviour 
caused by the neglect of L, so equation (10) will be used here. A flow with 
negligible L is essentially equivalent to a real flow whase stability is 
determined by the wave-development in the interfacial shear layer, not 
in the surrounding uniform streams where all disturbances rapidly die away. 
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The inviscid boundary conditions that the vertical velocity vanishes at 
infinity become 

These conditions and equation (10) incidentally ensure that the horizontal 
velocity also vanishes at infinity. 

Before solving the eigenvalue problem, we note its time and space 
symmetry. The equation and the boundary conditions are real because 
the inviscid flow is time-reversible. Therefore, if c is an eigenvalue 
corresponding to the eigenfunction 4 for given values of a and J ,  
c" = c,- ic ,  is an eigenvalue corresponding to the function +* for the 
same u and J .  A nominal reverse of the y-direction changes the sign of g 
and p, but not of their product in J .  Also it changes the sign of U, an odd 
function of y ,  but leaves the boundary conditions unchanged. There thus 
is no difference in the positive and negative x-directions in the specification 
of the problem. Therefore, if c is an eigenvalue corresponding to +(y) 
for given M and J ,  - c is an eigenvalue corresponding to 4( - y )  for the 
same cc and J .  This gives, for each wave travelling in one direction, 
another similar wave in the opposite direction. On the grounds of 
uniqueness it is natural to suppose that, for a neutral disturbance with ci = 0 
at any rate, these waves coincide and the wave speed c, = 0. This certainly 
is true for a neutral disturbance of the flow with uniform density, i.e. with 
J = 0, because Tollmien (1935) proved that c = U where U" = 0 for 
general monotonic U. The particular velocity profile U = tanhy is 
monotonic and is zero at the only point where U" = 0, namely at y = 0. 
Therefore, in seeking a neutral wave with ci = 0 for a criterion of stability 
of the flow of a heterogeneous fluid, it will be assumed that 

This will be shown to lead to an eigensolution. 
solution will be supported in the first paragraph of $5. 

a++O as y-+f 03. (13) 

c = 0. (14) 
The uniqueness of this 

Thus equation (10) becomes 

U(+" - u2+) - U"+ + J+/ U = 0, 
+" + (2 sechay - a2 + J coth2y)4 = 0. 

(15) 
(16) i.e. 

It remains to find eigenvalues J (a2)  of equation(l6) and boundary conditions 

It is convenient to use U as the independent variable. I t  can then be 
(13 1. 

shown that 

(1-u2)4,,-2u+u+ 2- - a2 + J }+ = 0, (17) { 1-u2 U2(1-U2) 
and u+(U) = 0 at U =  +1, (18) 
where the subscript U denotes differentiation with respect to U. Equation 
(17) has four regular singularities, at - 1, 0, 1 and 03. In  fact, 4 can be 
represented by the Riemann symbol 

0 -1 CO 

(19) 
-3p i(1-A) -& - 1  
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where 

unless J = 0, in which case the symbol is 

X = (1 -4J)'I2, p = + ( c ~ ~ - J ) l / ~ ,  

1 

[ - h a  -3a 

P 1 - l  l a  +a 

Consider the special case J = 0 first. In this case a solution of 
Rayleigh's equation for a homogeneous fluid is sought. Equation (17) 
becomes the associated Legendre equation of degree one and order a. 
These Legendre functions are 

4 = (U-a){(l+U)/(l-U))ta or (U+a){(l-U)/(l+U)}*a 
in general. When a = 0 or 1, these two solutions coincide; the second 
solutions are then 

1+u 
#=&Ulog-- 1-u -1 (a  = 01, 

# = (1  - u y  ; log l + u +  - L} { 1-77 1-u2 
( a =  1). 

It can be seen that there are only two solutions satisfying the boundary 
conditions (18), namely 

and 

tc = 0, 

a = 1, 

# = U = tanhy, 

4 = (1 - U2)1'2 = sechy. 

A natural way to solve the problem for small J would be to perturb 
these eigensolutions by use of a power series in J or some other convenient 
parameter. Before this can be done the singularities of # must be removed. 
They may be divided out by defining a new dependent variable 

Then 
x = ( U +  1)-4aU-l(l+h)( u- l)-tp#. (22) 

0 1  co 

x = P  I-: 0 0 Q+p-$X 77 
[ - p  -h - p  - -$+p-$h  

satisfies 

($+p-+A)(-++p-+A) 
( U +  l ) (U-  1) 

x = 0. (23) 

The boundary conditions are that x is regular at U = 0, f 1. 
Note that the coefficient of the last term of this equation is of the form 

A( U +  1)-1( U -  1)-'. The general form of this term for a function with 
four regular singularities at a, b, c, 00 (one exponent at each of the finite 
singularities being zero) is ( A  U +  B)(  U -  u)-l( U -  b)-l( U -  c)-l, where 
A is the product of the exponents at infinity and B is some constant. Now 
the equation for #, and therefore for x, is even in U. This is why B = 0 
in equation (23) and the last term takes its simple form, 
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It now appears that it is unnecessary to expand x as a power series in J 
because an exact solution is given by 

x = constant, (g  + E L  - $A)(  - $ + p - &I) = 0. 
Now CI > 0, and J is real. Therefore the real part of h = (1 -4J)1'2 is less 
than unity in magnitude. But the sign of p = + (a2 - J)liZ has been chosen 
so that p has a non-negative real part. Therefore Q + p - - $ h  # 0 in any 
real flow. Therefore 

- $ + p - $ h  = 0. (24)  

J = m2( 1 - a2). (25 ) 

On substituting for h and p from equations (ZO), it can be shown that this 
becomes 

This equation is plotted in figure 2. The eigenfunction is found, by putting 
x = const. and J = a2(1 - 2)  in equation (22), to be 

+ = (sechyy(tanhy)l-a'. (26) 

I 

-I' 
4 

I-; c 

I 
I 
I 
1 5 - 
4 0 

Figure 2. The curve of neutral stability J = a2(1 -aa). 

This eigensolution, (25) and (26), joins up the only two solutions for 
For each value of CI, equation (25) gives a value of J for a neutral 

The two roots of u2 coincide if J = 2 and are complex if 

It may be noted that the horizontal velocity of the disturbance (i.e. 
4' exp( iax ) )  is infinite in the critical plane where y = 0. This would be 
modified by inclusion of viscous terms as is met in the asymptotic theory 
of the Orr-Sommerfeld equation for large Reynolds number. However, 
the velocity flux is finite because 4' = O(l/y) as y -+ 0. Also, the vertical 
velocity of the disturbance, icc+exp(iarx), is finite everywhere if J is 
non-negative, 

J = 0. 
disturbance. 
J > 4. 
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5 .  DISCUSSION OF THE STABILITY CRITERION 

The relation (25) for neutral stability in the (J,a)-plane is shown 
in figure 2. This is one part of the neutral curve, but other possible parts 
and the division of the plane into stable and unstable regions must be 
considered in order to see whether a wave is stable or unstable (i.e. whether 
ci < 0 or ci > 0) for any given values of J and a. The division of the plane 
will be made possible by the knowledge of the general stabilizing effect 
of the buoyancy forces and of the stability characteristics of a homogeneous 
fluid. I n  $4 it was shown that if J = 0 and ci = 0, then c,. = 0, and that the 
only two wave-numbers for neutral stability are a = 0, 1. From the 
asymptotic viscous theory of the Orr-Sommerfeld equation it follows that 
the flow is stable for values ( J ,  a )  on the a-axis if a > 1 and unstable if 
a < 1. It may be concluded that the division of the plane into two simply- 
connected regions, the stable and the unstable, is as shown in figure 2. 
The possibility of a closed stable region to the left or unstable region to 
the right of the neutral curve must be admitted, but opposes the way in 
which gravity damps the energy of a disturbance and stabilizes a 
heterogeneous fluid. 

On these grounds the critical Richardson number, the maximum value 
of J for which there can be instability, is t. This is the same as the critical 
value found by Goldstein (1931). This striking agreement, despite the 
different density and velocity profiles used, naturally raises the suggestion 
that it is not accidental. It might be thought, for instance, on noticing 
that U = y near the critical planey = 0 in both representations of the velocity 
profile in a shear layer, that the velocity near the critical plane effectively 
determines the stability of the flow. The  value J = $ obtained by Goldstein 
(193 1) comes from the order of a Bessel equation, the order being principally 
determined by the behaviour of U near the critical plane. However, this 
behaviour does not appear to be so important for the smooth profile 
U = tanhy because the effect of the other singularities of the stream 
function of the disturbance can be seen in the analysis of $4. I t  has also 
been observed in $ 3  that plane Couette flow must have a non-positive 
critical Richardson number, although the velocity has the same behaviour, 
U - y ,  near the critical plane. This shows that the value J = a is 
determined by the unbounded shear flow as a whole rather than by its 
critical plane alone. Therefore, agreement, approximate or exact, is a 
justification of Goldstein’s use of his three-layer flow to determine the 
stability criterion. The  exactness of the agreement on a simple fraction $ 
appears to be accidental, and is presumably a consequence of the simplicity 
of the two flows being compared. 

The condition J > B for inviscid stability is also sufficient for viscous 
stability, provided that viscosity is solely a stabilizing effect in this flow 
of an unbounded heterogeneous fluid. The  effects of density variation 
and viscosity are primarily separate, so it is possible to use flows of a 
homogeneous fluid as a guide. Heisenberg’s criterion is known not to be 
valid for unbounded flows, but there has been little detailed calculation 

223 
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of their stability. Lessen (1949) calculated only part of the curve of neutral 
stability of a free boundary layer and found that a decrease of Reynolds 
number R caused an increase of stability in all his results. 

Lessen (1949) did not explicitly calculate the velocity profile of the 
boundary layer from Blasius’s equation, but Lock (1951) has done so. 
This permits a comparison of Lessen’s results with those of $ 4  after the 
dimensionless units have been related. The inviscid asymptote corresponds 
very closely to  a = 1, in agreement with the larger root of J = aa(l -aa) 
for J = 0, which shows that the stability characteristics of an unbounded 
shear layer depend only weakly on the exact shape of the velocity profile. 
This gives the anticipated position of the ends of the curve of neutral 
stability in the ( a ,  R)-plane as J increases from 0 to 4. The upper branch is 
surmized to drop from a = 1 to cc = 1/42; a lower branch (not calculated 
by Lessen) similarly rises from cc = 0 to a = 1/42. When J = 2 ,  the 
branches coincide at a = 1/42, and the flow is stable for all values of a 
and R. This indicates that J > 4 is a sufficient condition of stability for 
a viscous shear layer between parallel streams of different densities. 

The author is very grateful to Dr G. K. Batchelor for much helpful 
advice and guidance during this work. In  this time the author has been 
Twisden Student of Trinity College and a Research Student of the 
Department of Scientific and Industrial Research. 
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CORRIGENDUM 

‘‘ Heat transfer from surfaces of non-uniform temperature ”, by D. €3. 

Pages 29 and 30. In equations (13) and (14), and on figure 4, the 
SPALDING (J .  Fluid Mech. 4, 1958, 22). 

coefficient 0.1 should be replaced by 0.2. 




